

11.04.2023

Technical Information

BLS Spray Application

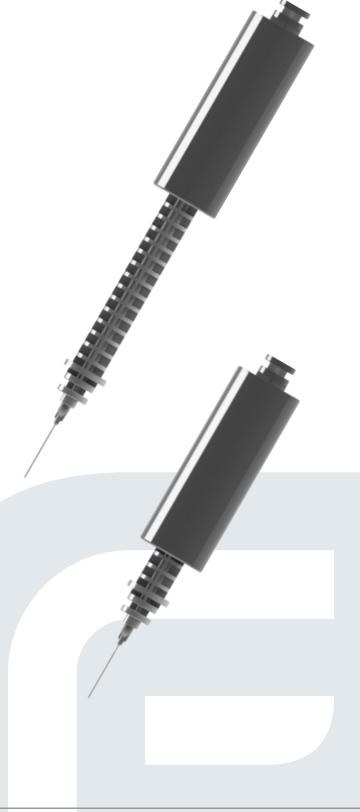
11..04.2023

The BLS Spray Application

The innovative technology used in the BLS spray application allows highly reproducible coating with low amounts of paint in industrial quality.

The change between different types of paints and coatings (water and solvent based) can be carried out without cleaning.

The unique design, based on a conventional pneumatic spray head, ensures highly reproducible spraying results.


The BLS spray application uses an award-winning technology (European Coating Award 2005) and is available in two differrent variants: a stand-alone machine for your QC or coating-lab and a robotic module for use in fully automated coating systems.

Benefits

- Easy to use, also for untrained operators
- Prepare samples by a simple "press-button" operation
- Robust design
- Minimum cleaning and service effort
- Ready-to-use system
- Low material consumption
- Reduction of cleaning solvent quantity

11..04.2023

The BLS syringe technology

Benefits

- The BLS syringe is used for introducing coating material in the spray application.
- This syringe is comparable to a cartouche system, which can hold and store material and supports direct spraying without trans-filling the coating material.
- The dosing tip is introduced in the spray head such that there is no direct contact between the liquid coating material and the spray nozzle. Therefore, no cleaning is required between the individual spraying processes.

11..04.2023

Range of applications

The BLS spray application is in continuous operation at a large number of customers.

It is meanwhile mainly used in quality control. Here our customers benefit from the high reproducibility.

Comparison of spraying results across different machines and even different production sites is easily possible with the BLS spray application.

For many coating systems and application methods the spraying parameters can be transferred to the BLS spray application independently from the application method of the end-user.

Benefits

Quality control

- Highest reproducibility
- Colour, gloss and film thickness can be compared across different sites
- Less customer complaints by using tighter tolerances in your approval process
- Approval independent from endcustomer application system by transferring spray parameters

Research & Development

- Application with very small amounts of paint (> 5ml)
- Independence for your application engineering group
- Acceleration of your R&D projects

11..04.2023

Technical Data

Design size	10	30	50						
Width x depth x height	1810 x1200 x 2390 [mm]	1480 x 2380 x 2590 [mm]	1780 x 2360 x 3190 [mm]						
Weight	approx. 800kg	approx. 1100kg	approx. 1500 kg						
Exhaust (horizontal application)	min. 1500 m³/h rec.* 2000 m³/h	min. 3000 m³/h rec.* 3500 m³/h	min. 3500 m³/h rec.* 4500 m³/h						
Exhaust connection	Ø 200 mm	Ø 315 mm	300x500 mm						
Airflow velocity in the paint booth	0,3-0,5m/s	0,3-0,5m/s	0,3-0,5m/s						
Power supply	AC 400V 50/60Hz	AC 400V 50/60Hz	AC 400V 50/60Hz						
Compressed air supply	6 - 10 bar	6 - 10 bar	6 - 10 bar						
Coatings per day	up to 100	up to 400	up to 400						
ນ X Substrate axis	max. 1000mm	max. 1300mm	max. 1600						
X Substrate axis Y 2nd axis Z Syringe-axis	max. 480mm	max. 480mm	max. 600mm						
Z Syringe-axis	max. 200mm	max. 200mm	max. 200mm						
Recommended substrate size	See page 6 "Design Size / Variants / Options"								
*rec. = recommended									

Füll Lab Automation GmbH | Riedstraße 25 | D-73760 Ostfildern | www.fuell-labautomation.com

11..04.2023

Design Size / Variants / Options

Design Size	Туре	Electrics	Application direction	S = Standard filter	T = Pocket filter horizontal	E = Edrizzi Filter	V = Prefilter automatic*	Z = Supply air hood	K = Cross coating	Recommended max. substrate size [mm]
10	\$\int_{\inttitleftinteta\int_{\int_{\int_{\int_{\int_{\inttitetantleftinteta\int_{\inttituleftinteta\int_{\inttiteta\int_{\inttitleftittileftilta\int_{\inttitleftilta\inttileftilta\int_{\inttileftilta\int_{\inttilittileftilta\int_{\inttileftilta\int_{\inttileftilta\int_{\inttileftilta\int_{\intitleftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilitileftilta\inttileftilta\inttileftilta\intileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\intileftilta\inttileftilta\inttileftilta\intileftilta\inttileftilta\inttileftilta\intileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\intileftilta\inttileftilta\inttileftilta\intileftilta\intileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\inttileftilta\intileftilta\int\inttileftilta\intileftilta\intileftilta\ii	$\xi U_{\approx} \xi U_{0} O_{0}$	H = horizontal	Х	X			X	Х	300 x 200
10 10 10 10 10 10 10 10 10 10 10 10 10 1	5 = 55.3 A = 4060		V = vertical	Х				X	X	200 x 150
30 Stand Alone	4/0 _{1/8}	$A = R_0 b_0 t_0$ $E_0 = E_0 t_0$ $U_1 = U_2$	H = horizontal	Х	Х			X	X	300 x 200
	S = Stand, R = Robotik		V = vertical	Х		X	X	X	Х	300 x 200
	otic	$EU_{\sim}^{EU_{\sim}}EU_{ODe}$	H = horizontal Coming soon!							500 x 500
	A = Aobotic		V = vertical	Х				Х	Х	500 x 500